# DI-6R,7R<sup>1</sup>-4(3H)-OXO-2-QUINAZOLINYL-SUBSTITUTED CYCLOBUTANES FROM PINIC AND *sym*-HOMOPINIC ACIDS

### F. Avotin'sh, M. Petrova, and A. Strakovs

The corresponding diamides were obtained from reaction of cis-3-carboxy-2,2-dimethylcyclobutylacetic acid (pinic acid) and of cis/trans-3-(carboxymethyl)-2,2-dimethylcyclobutyl-acetic acid (homopinic acid) dichlorides with two equivalents of 5-bromo-, 4-chloro-, and 4,5-dimethoxyanthranilic acids. Treatment of them with formamide leads to the formation of the corresponding 2,2-dimethyl-3-[4(3H)-oxo-2-quinazolinyl]methyl-1-[4(3H)-oxo-2-quinazolinyl]cyclobutanes and 2,2-dimethyl-1,3-di[4(3H)-oxo-2-quinazolinylmethyl]cyclobutanes.

**Keywords:** N-acyl derivatives of 5-bromo-, 4-chloro-, and 4,5-dimethoxyanthranilic acids, *sym*-homopinic acid, di-6,7-substituted 4(3H)-oxo-2-quinazolinyl derivatives of cyclobutane, pinic acid.

In continuation of studies [1-3] on the synthesis of 4(3H)-quinazolinones with a cyclobutyl substituent at position 2, we have obtained the corresponding diamides **4a-c**, **5a-c** (Table 1) by the reactions of 4,5-substituted anthranilic acids (**1a-c**) with the pinic (**2**) [4] and *sym*-homopinic (**3**) acid dichlorides [5,6]. Heating the N-acyl anthranilic acids **4a-c**, **5a-c** and formamide in a molar ratio of 1:6 to 1:8 at 180-190°C leads to the formation of the di-[4(3H)-oxo-2-quinazolinyl derivatives **6a-c**, **7a-c** (Table 1). The di-4(3H)-quinazolinones **6a-c**, **7a-c** are soluble with difficulty in organic solvents, and decompose at the melting point.

On heating diamides 4 and 5 in formamide a side reaction occurs leading to the formation of 4(3H)quinazolinones **8a-c** in 11-22% yield.

The structure of the synthesized compounds was confirmed by data of IR and <sup>1</sup>H NMR spectra (Table 2). The proton signals of the geminal  $\alpha$ - and  $\beta$ -methyl groups were readily identified in the <sup>1</sup>H NMR spectra of all compounds **4-7** at  $\delta$  0.85-1.35 and 0.81-1.05 ppm respectively [7]. The diamides **5a,b** were a mixture of *cis/trans* isomers, which was indicated by the appearance of additional signals for the geminal methyl groups at 1.04-1.06 ppm [5,8]. Low field signals were detected in the <sup>1</sup>H NMR spectra of compounds **4** and **5** for amide NH protons ( $\delta$  11-12 ppm) and strongly broadened signals for the carboxyl group protons in the range 6.5-9.5 ppm. Triplet signals were also identified in the spectra of compounds **4a-c** for the C<sub>(3)</sub>-H methine protons ( $\delta$  2.86-2.93 ppm, <sup>3</sup>*J* = 9 Hz). Bands were clearly displayed in the IR spectra of diamides **4** and **5** for v<sub>C=0</sub> absorption (1702-1672 and 1670-1642 cm<sup>-1</sup>), a band characteristic of  $\delta_{NCHO}$  absorption (1532-1580 cm<sup>-1</sup>), intense absorption for the NH bond (3108-3345 cm<sup>-1</sup>), and also a broad band for the absorption of the carboxyl group at 2500-2600 cm<sup>-1</sup>. The amide functions of the quinazolinone were displayed in the IR spectra of compounds **6** and **7** (v<sub>C=0</sub> 1650-1676, v<sub>NH</sub> 3123-3183 cm<sup>-1</sup>). The protons of the NH groups of compounds **6** and **7** in the <sup>1</sup>H NMR spectra were detected as broadened signals in the range 9.59-12.38 ppm.

Riga Technical University, Riga LV-1658, Latvia; e-mail: marina@osi.lv. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, pp. 926-930, July, 2002. Original article submitted April 24, 2001.



**1**, **4–8** a R = Br, R<sup>1</sup> = H; b R = H, R<sup>1</sup> = Cl; c R = R<sup>1</sup> = MeO; **2**, **4**, **6** n = 0; **3**, **5**, **7** n = 1

| Com-  | Empirical<br>formula           | Found, %<br>Calculated. % |                     |                       |                       | (mp, °C<br>(solvent for                 | Yield. % |
|-------|--------------------------------|---------------------------|---------------------|-----------------------|-----------------------|-----------------------------------------|----------|
| pound |                                | С                         | Н                   | Hal                   | Ν                     | crystallization)                        | , /0     |
| 4a    | $C_{23}H_{22}Br_2N_2O_6$       | <u>47.15</u><br>47.45     | $\frac{4.02}{3.81}$ | $\frac{27.14}{27.48}$ | <u>4.55</u><br>4.81   | 228-230<br>MeNO <sub>2</sub>            | 85.6     |
| 4b    | $C_{23}H_{22}Cl_2N_2O_6\\$     | <u>56.19</u><br>55.99     | $\frac{4.40}{4.49}$ | $\frac{14.27}{14.37}$ | <u>5.61</u><br>5.68   | 229-231<br>MeNO <sub>2</sub>            | 74.4     |
| 4c    | $C_{27}H_{32}N_2O_{10}\\$      | <u>54.38</u><br>59.55     | <u>5.81</u><br>5.92 |                       | <u>5.02</u><br>5.14   | 264-265<br>MeNO <sub>2</sub>            | 76.8     |
| 5a    | $C_{24}H_{24}Br_2N_2O_6\\$     | $\tfrac{48.58}{48.34}$    | $\frac{4.01}{4.06}$ | $\frac{26.85}{26.80}$ | $\frac{4.59}{4.70}$   | 221-222<br>MeCN                         | 84.9     |
| 5b    | $C_{24}H_{24}Cl_2N_2O_6$       | <u>56.66</u><br>56.81     | $\frac{4.70}{4.77}$ | $\frac{13.72}{13.97}$ | $\frac{5.63}{5.52}$   | 231-232<br>MeCN                         | 86.0     |
| 5c    | $C_{28}H_{34}N_2O_{10}\\$      | $\frac{60.11}{60.21}$     | $\frac{6.06}{6.13}$ |                       | $\frac{4.89}{5.01}$   | 243-245<br>BuOH                         | 81.6     |
| 6a    | $C_{23}H_{20}Br_{2}N_{4}O_{2}$ | <u>50.59</u><br>50.76     | $\frac{3.62}{3.70}$ | <u>29.65</u><br>29.36 | $\frac{10.11}{10.29}$ | 334-335<br>DMF-H <sub>2</sub> O,<br>4:1 | 49.6     |
| 6b    | $C_{23}H_{20}Cl_2N_4O_2\\$     | $\frac{60.85}{60.67}$     | $\frac{4.29}{4.43}$ | <u>15.89</u><br>15.57 | $\frac{11.93}{12.30}$ | 314-316<br>MeNO <sub>2</sub>            | 47.5     |
| 6c    | $C_{27}H_{30}N_4O_6$           | $\tfrac{63.88}{64.02}$    | <u>5.91</u><br>5.97 |                       | $\frac{10.90}{11.06}$ | 300-302<br>MeNO <sub>2</sub>            | 46.5     |
| 7a    | $C_{24}H_{22}Br_2N_4O_2$       | <u>51.51</u><br>51.63     | $\frac{3.90}{3.97}$ | $\frac{28.33}{28.63}$ | $\frac{10.14}{10.04}$ | 309-311<br>MeCN                         | 48.2     |
| 7b    | $C_{24}H_{22}Cl_2N_4O_2$       | <u>61.19</u><br>61.41     | $\frac{4.61}{4.72}$ | <u>15.25</u><br>15.11 | <u>11.79</u><br>11.94 | 296-298<br>MeNO <sub>2</sub>            | 51.5     |
| 7c    | $C_{28}H_{32}N_4O_6$           | <u>64.73</u><br>64.60     | <u>6.23</u><br>6.20 |                       | $\frac{10.63}{10.76}$ | 311-313<br>DMF-H <sub>2</sub> O,<br>1:1 | 50.0     |
| 8c    | $C_{10}H_{10}N_2O_3$           | $\frac{58.11}{58.25}$     | $\frac{4.79}{4.88}$ |                       | $\frac{13.65}{13.58}$ | 285-287<br>MeNO <sub>2</sub>            | 54.6     |

TABLE 1. Characteristics of the Synthesized Compounds 4-8\*

\* Compounds **4a-c** to **7a-c** decompose.

| Com-<br>pound | IR spectrum,<br>v, cm <sup>-1</sup>                  | <sup>1</sup> H NMR spectrum, δ, ppm, SSCC ( <i>J</i> ), Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>4</b> a    | 1698, 1666, 1600,<br>1574, 1504; 3345,<br>2610       | 0.93 (3H, s, β-CH <sub>3</sub> ); 1.29 (3H, s, α-CH <sub>3</sub> ); 2.06 (2H, m, CH <sub>2</sub> );<br>2.43 (3H, center m, CH <sub>2</sub> -CH); 2.89 (1H, t, ${}^{3}J$ = 9.0, CH);<br>7.71 (2H, dd, ${}^{3}J$ = 9, ${}^{4}J$ = 2, 2C <sub>6</sub> H <sub>3</sub> ); 8.03 (1H, d, ${}^{4}J$ = 2, C <sub>6</sub> H <sub>3</sub> );<br>8.05 (1H, d, ${}^{4}J$ = 2, C <sub>6</sub> H <sub>3</sub> ); 8.45 (1H, d, ${}^{3}J$ = 9, C <sub>6</sub> H <sub>3</sub> );<br>8.53 (1H, d, ${}^{3}J$ = 9, C <sub>6</sub> H <sub>3</sub> ); 10.96 (2H, br. s, 2NH) |
| 4b            | 1680, 1642, 1600,<br>1580, 1514; 3260,<br>3125; 2627 | 0.94 (3H, s, β-CH <sub>3</sub> ); 1.29 (3H, s, α-CH <sub>3</sub> ); 2.07 (2H, m, CH <sub>2</sub> );<br>2.49 (3H, center m, CH <sub>2</sub> -CH); 2.93 (1H, t, ${}^{3}J$ = 9, CH);<br>5.54 (1H, br. s, 20H); 7.18 (2H, dd, ${}^{3}J$ = 9, ${}^{4}J$ = 1.5, C <sub>6</sub> H <sub>3</sub> );<br>7.99 (2H, d, ${}^{3}J$ = 9, 2C <sub>6</sub> H <sub>3</sub> ); 8.62 (1H, d, ${}^{4}J$ = 1.5, C <sub>6</sub> H <sub>3</sub> );<br>8.73 (1H, d, ${}^{4}J$ = 1.5, C <sub>6</sub> H <sub>3</sub> ); 11.21 (1H, br. s, NH);<br>11.3 (1H, br. s, NH)           |
| 4c            | 1672, 1614, 1532;<br>3195                            | 1.05 (3H, s, β-CH <sub>3</sub> ); 1.35 (3H, s, α-CH <sub>3</sub> ); 2.15-2.58 (5H, m,<br>-CH <sub>2</sub> CHCH <sub>2</sub> ); 2.86 (1H, t, ${}^{3}J$ = 9, CH); 3.87 (6H, s, 2CH <sub>3</sub> O);<br>3.95 (6H, s, 2CH <sub>3</sub> O); 7.55 (2H, s, 2C <sub>6</sub> H <sub>2</sub> ); 8.48 (1H, s, C <sub>6</sub> H <sub>2</sub> );<br>8.53 (1H, s, C <sub>6</sub> H <sub>2</sub> ); 8.69 (2H, br. s, 2OH);<br>11.33 (1H, br. s, NH); 11.46 (1H, br. s, NH)                                                                                           |
| 5a            | 1702, 1668, 1602,<br>1578, 1518; 3119,<br>2590       | 0.99 and 1.06 (3H, s, β-CH <sub>3</sub> ); 1.06 and 1.11 (3H, s, α-CH <sub>3</sub> );<br>1.43-2.59 (8H, m, -CH <sub>2</sub> CHCH <sub>2</sub> CHCH <sub>2</sub> -);<br>7.55 (2H, dd, ${}^{3}J$ = 9, ${}^{4}J$ = 2, 2C <sub>6</sub> H <sub>3</sub> ); 8.21 (2H, d, ${}^{4}J$ = 2, C <sub>6</sub> H <sub>3</sub> );<br>8.66 (2H, d, ${}^{3}J$ = 9, 2C <sub>6</sub> H <sub>3</sub> ); 10.47 (2H, br. s, 2NH);<br>11.33 (2H, br. s, 2OH)                                                                                                                  |
| 5b            | 1702, 1670, 1601,<br>1580, 1524; 3108,<br>2620       | 0.96 and 1.04 (3H, s, β-CH <sub>3</sub> ); 1.04 and 1.05 (3H, s, α-CH <sub>3</sub> );<br>2.34 (8H, center m, -CH <sub>2</sub> CHCH <sub>2</sub> CHCH <sub>2</sub> -); 6.20 (2H, br. s, 2OH);<br>7.20 (2H, dd, ${}^{3}J$ = 9, ${}^{4}J$ = 2, 2C <sub>6</sub> H <sub>3</sub> ); 8.01 (2H, d, ${}^{3}J$ = 9, 2C <sub>6</sub> H <sub>3</sub> );<br>8.63 (2H, d, ${}^{4}J$ = 2, 2C <sub>6</sub> H <sub>3</sub> ); 11.23 (2H, br. s, 2NH)                                                                                                                   |
| 5c            | 1678, 1636, 1620,<br>1532, 1510;3108,<br>2620        | 0.96 (3H, s, β-CH <sub>3</sub> ); 1.04 (3H, s, α-CH <sub>3</sub> );<br>2.34 (8H, center m, -CH <sub>2</sub> CHCH <sub>2</sub> -CHCH <sub>2</sub> ); 3.76 (6H, s, 2CH <sub>3</sub> O);<br>3.79 (6H, s, 2CH <sub>3</sub> O); 7.47 (2H, s, C <sub>6</sub> H <sub>2</sub> ); 8.29 (2H, s, C <sub>6</sub> H <sub>2</sub> );<br>9.20 (2H, br. s, 2OH); 11.54 (2H, br. s, 2NH)                                                                                                                                                                               |
| 6a            | 1674, 1617; 3134                                     | 0.81 (3H, s, β-CH <sub>3</sub> ); 1.25 (3H, s, α-CH <sub>3</sub> );<br>1.77-2.94 (6H, m, -CHCH <sub>2</sub> CHCH <sub>2</sub> -); 7.54 (1H, d, ${}^{3}J = 9$ , C <sub>6</sub> H <sub>3</sub> );<br>7.58 (1H, d, ${}^{3}J = 9$ , C <sub>6</sub> H <sub>3</sub> ); 7.84 (2H, dd, ${}^{3}J = 9$ , ${}^{4}J = 2$ , C <sub>6</sub> H <sub>3</sub> );<br>8.16 (2H, d, ${}^{4}J = 2$ , C <sub>6</sub> H <sub>3</sub> ); 12.14 (1H, br. s, NH);<br>12.38 (1H, br. s, NH)                                                                                      |
| 6b            | 1660, 1556, 1606,<br>1500; 3171, 3123                | 0.83 (3H, s, β-CH <sub>3</sub> ); 1.27 (3H, s, α-CH <sub>3</sub> );<br>2.01-3.61 (6H, m, -CHCH <sub>2</sub> CHCH <sub>2</sub> );<br>7.46 (2H, dd, ${}^{3}J$ = 9, ${}^{4}J$ = 2, 2C <sub>6</sub> H <sub>3</sub> ); 7.60 (1H, d, ${}^{4}J$ = 2, C <sub>6</sub> H <sub>3</sub> );<br>7.66 (1H, d, ${}^{4}J$ = 2, C <sub>6</sub> H <sub>3</sub> ); 8.16 (2H, d, ${}^{3}J$ = 9, C <sub>6</sub> H <sub>3</sub> );<br>11 16 (2H, br, s, 2NH)                                                                                                                 |
| 6c            | 1656, 1614, 1522,<br>1490; 3167                      | 0.83 (3H, s, β-CH <sub>3</sub> ); 1.25 (3H, s, α-CH <sub>3</sub> );<br>1.98-3.08 (6H, m, -CHCH <sub>2</sub> CHCH <sub>2</sub> ); 3.87 (6H, s, 2CH <sub>3</sub> O);<br>3.92 (6H, s, 2CH <sub>3</sub> O); 7.10 (1H, s, C <sub>6</sub> H <sub>2</sub> ); 7.16 (1H, s, C <sub>6</sub> H <sub>2</sub> );<br>7.45 (2H, s, C <sub>6</sub> H <sub>2</sub> ); 11.85 (1H, br. s, NH); 12.09 (1H, br. s, NH)                                                                                                                                                     |
| 7a            | 1676, 1618, 1557;<br>3163                            | 1.01 (6H, α-, β-CH <sub>3</sub> ); 1.48-2.74 (8H, m, –CH <sub>2</sub> CHCH <sub>2</sub> CHCH <sub>2</sub> –);<br>7.49 (2H, d, ${}^{3}J$ = 9, C <sub>6</sub> H <sub>2</sub> ); 7.87 (2H, dd, ${}^{3}J$ = 9, ${}^{4}J$ = 2, C <sub>6</sub> H <sub>2</sub> );<br>8.16 (2H, d, ${}^{4}J$ = 2, C <sub>6</sub> H <sub>2</sub> ); 12.34 (2H, br. s, 2NH)                                                                                                                                                                                                     |
| 7b            | 1672, 1614, 1532;<br>3183                            | 1.01 (3H, s, $\beta$ -CH <sub>3</sub> ); 1.04 (3H, s, $\alpha$ -CH <sub>3</sub> );<br>1.58-2.63 (8H, m, -CH <sub>2</sub> CHCH <sub>2</sub> CHCH <sub>2</sub> -);<br>7.45 (2H, dd, ${}^{3}J$ = 9, ${}^{4}J$ = 2, 2C <sub>6</sub> H <sub>2</sub> ); 7.63 (2H, d, ${}^{4}J$ = 2, 2C <sub>6</sub> H <sub>2</sub> );<br>8.13 (2H, d, ${}^{3}J$ = 9, 2C <sub>6</sub> H <sub>2</sub> ); 12.05 (2H, br. s, 2NH)                                                                                                                                               |
| 7c            | 1656, 1612, 1522,<br>1490; 3167                      | 0.82 (3H, s, β-CH <sub>3</sub> ); 0.85 (3H, s, α-CH <sub>3</sub> );<br>1.45-2.27 (8H, m, -CH <sub>2</sub> CHCH <sub>2</sub> CHCH <sub>2</sub> -); 3.09 (6H, s, 2CH <sub>3</sub> O);<br>3.14 (6H, s, 2CH <sub>3</sub> O); 5.65 (2H, s, C <sub>6</sub> H <sub>2</sub> ); 5.94 (2H, s, 2C <sub>6</sub> H <sub>2</sub> );<br>9.59 (2H, s, 2NH)                                                                                                                                                                                                            |
| 8c            | 1711, 1682, 1640,<br>1600, 1505; 3180,<br>3120       | 3.38 (3H, s, CH <sub>3</sub> O); 3.94 (3H, s, CH <sub>3</sub> O); 7.15 (1H, s, C <sub>6</sub> H <sub>2</sub> );<br>7.47 (1H, s, C <sub>6</sub> H <sub>2</sub> ); 8.01 (1H, s, =CH–); 11.42 (1H, br. s, NH)                                                                                                                                                                                                                                                                                                                                            |

## TABLE 2. Spectral Characteristics of Compounds 4-8

### EXPERIMENTAL

The IR spectra were taken on a Specord IR 75 instrument for suspensions of substances in nujol (1500-1800 cm<sup>-1</sup>) and in hexachlorobutadiene (2000-3600 cm<sup>-1</sup>). The frequencies of the stretching vibrations of C–H bonds at 2800-3050 cm<sup>-1</sup> are not given.

The <sup>1</sup>H NMR spectra were recorded on a Bruker WH-90/DS (90 MHz) in DMSO-d<sub>6</sub> solution, internal standard was TMS. A check on the purity of products was effected by TLC on Silufol UV-254 plates in the system CHCl<sub>3</sub>–C<sub>2</sub>H<sub>5</sub>OH, 9:1. Visualization was with UV light or chlorine with subsequent treatment with KI–benzidine reagent. The acid chlorides of *cis*-3-carboxy-2,2-dimethylcyclobutylacetic (pinic) (**2**) and *cis/trans*-3-(carboxymethyl)-2,2-dimethylcyclobutylacetic (*sym*-homopinic) (**3**) acids were obtained by the procedure of [4-6]. The diamides of pinic and *sym*-homopinic acids were synthesized by the methods of [4,6,8].

The physicochemical and spectral characteristics of compounds 4-8 are given in Tables 1 and 2.

The yield of the known quinazolone 8c obtained by the method of [9] is given in Table 1. Yields of the reaction side products **8a-c** are given in the experimental section.

4-Bromo-2-carboxyphenylamide of 3-(4-Bromo-2-carboxyphenylaminocarbonyl)-2,2-dimethylcyclobutylacetic Acid (4a). A solution of pinic acid dichloride 2 (1.0 g, 4.5 mmol) in absolute dioxane (20 ml) was added slowly with stirring to a solution of 5-bromoanthranilic acid 1a (1.94 g, 9 mmol) and triethylamine (2.0 ml, 14.3 mmol) in absolute dioxane (30 ml) at 20°C. The mixture was stirred for 3 h, the precipitate of triethylamine hydrochloride was filtered off, and washed with dioxane (3 × 10 ml). The filtrate was evaporated on a rotary evaporator in a water-pump vacuum, and the residue recrystallized.

The Diamides 4b,c were obtained analogously from anthranilic acids 1b,c by reaction with pinic acid dichloride 2.

**1,3-Di-(4-bromo-2-carboxyphenylaminocarbonylmethyl)-2,2-dimethylcyclobutane (5a).** A solution of *sym*-homopinic acid dichloride **3** (0.82 g, 3.5 mmol) in absolute dioxane (20 ml) was added slowly with stirring to a solution of 5-bromoanthranilic acid **1a** (1.54 g, 7.1 mmol) and triethylamine (1.0 ml, 7.1 mmol) in absolute dioxane (30 ml) at 20°C, and the mixture stirred for 2 h. The precipitate was filtered off, washed with dioxane ( $3 \times 10$  ml), the filtrate evaporated on a rotary evaporator in a water-pump vacuum, and the residue of **5a** was recrystallized.

The Diamides 5b,c were obtained analogously from amines 1b,c by reaction with *sym*-homopinic acid dichloride 3.

**3-[6-Bromo-4(3H)-oxo-2-quinazolinyl]-1-[6-bromo-4(3H)-oxo-2-quinazolinyl]methyl-2,2-dimethyl-cyclobutane (6a).** A mixture of diamide **4a** (0.84 g, 1.65 mmol) and formamide (1 ml, 7.14 mmol) was heated at 180-185°C for 2 h in a small flask with a reflux condenser. The mixture was cooled, and suspended in water (30 ml) containing sodium bicarbonate (0.6 g, 7.14 mmol). The precipitate of **6a** was filtered off, washed with water ( $3 \times 20$  ml), dried in the air, and recrystallized.

After removing **6a** the aqueous solution was acidified with dilute (1:1) hydrochloric acid to pH 5-6, extracted with chloroform ( $3 \times 20$  ml), and the extract dried over magnesium sulfate. The solvent was distilled on a rotary evaporator in a water-pump vacuum. The residue was recrystallized from nitromethane and **6-bromo-4(3H)-quinazolinone 8a** (0.16 g, 21.6%) was obtained; mp 264-266°C (decomp.); lit. mp 261-267°C (decomp.) [9]. No depression of melting point was observed on mixing with a known synthesized sample.

The diquinazolinyl derivatives 6b,c and the corresponding quinazolones 8b,c were obtained analogously from diamides 4b,c.

**7-Chloro-4(3H)-quinazolinone (8b).** Yield 19.9%; mp 243-244°C (decomp.) (acetonitrile); lit. mp 242-245°C [9]. No depression of melting point was observed on mixing with a known synthesized sample.

**6,7-Dimethoxy-4(3H)-quinazolinone (8c).** Yield 11.4%; mp 285-287°C (decomp.) (nitromethane). No depression of melting point was observed on mixing with a known synthesized sample. The identical known quinazolinone **8c** was obtained by the procedure of [9].

**1,3-Di-[6-bromo-4(3H)-oxo-2-quinazolinylmethyl]-2,2-dimethylcyclobutane (7a).** A mixture of diamide **5a** (0.35 g, 0.59 mmol) and formamide (0.45 g, 5 mmol) was heated at  $186\pm2^{\circ}$ C in a small flask with a reflux condenser. The mixture was cooled, and suspended in water (30 ml) containing sodium bicarbonate (0.2 g, 2.38 mmol). The precipitate of **7a** was filtered off, washed with water (3 × 20 ml), dried in the air, and recrystallized.

After separating **7a** the aqueous solution was acidified with dilute (1:1) hydrochloric acid to pH 5-6, extracted with chloroform ( $3 \times 20$  ml), and the extract dried over magnesium sulfate. The solvent was distilled on a rotary evaporator in a water-pump vacuum. The residue was recrystallized from nitromethane and quinazolinone **8a** (0.05 g, 18.9%) was obtained.

The diquinazolinyl derivatives 7b,c and the corresponding quinazolinones 8b,c were obtained analogously from diamides 5b,c. The yield of 8b was 16.2%, and of 8c 12.5%.

### REFERENCES

- 1. F. M. Avotinsh, M. V. Petrova, P. V. Pastors, and A. Ya. Strakov, *Khim. Geterotsikl. Soedin.*, 811 (1999).
- 2. F. M. Avotinsh, M. V. Petrova, N. N. Tonkikh, and A. Ya. Strakov, *Khim. Geterotsikl. Soedin.*, 1539 (2000).
- 3. F. M. Avotin'sh, M. V. Petrova, and A. Ya. Strakov, *Khim. Geterotsikl. Soedin.*, 1357 (2001).
- 4. F. Avotins, E. Gudriniece, L. Reimate, E. Bizdena, and L. Zandovska, *Izv. Akad. Nauk LatvSSR, Ser. Khim.*, 747 (1979).
- 5. O. Daugulis and F. Avotins, *Latv. J. Chem.*, No. 1, 102 (1997).
- 6. E. Bizdena, F. Avotins, E. Gudriniece, and H. Kazhoka, *Izv. Akad. Nauk LatvSSR, Ser. Khim.*, 453 (1981).
- 7. E. Liepins, R. Kampare, and F. Avotins, *Izv. Akad. Nauk LatvSSR, Ser. Khim.*, 89 (1975).
- 8. F. Avotins and A. Kirilova, *Latv. J. Chem.*, No. 1, 107 (1997).
- 9. B. R. Baker, R. E. Schaub, J. P. Joseph, F. J. McEvoy, and J. H. Williams, J. Org. Chem., 17, 141 (1952).