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DI-6R,7R1-4(3H)-OXO-2-QUINAZOLINYL-

SUBSTITUTED CYCLOBUTANES FROM

PINIC AND sym-HOMOPINIC ACIDS

F. Avotin'sh, M. Petrova, and A. Strakovs

The corresponding diamides were obtained from reaction of cis-3-carboxy-2,2-dimethylcyclobutylacetic
acid (pinic acid) and of cis/trans-3-(carboxymethyl)-2,2-dimethylcyclobutyl-acetic acid (homopinic
acid) dichlorides with two equivalents of 5-bromo-, 4-chloro-, and 4,5-dimethoxyanthranilic acids.
Treatment of them with formamide leads to the formation of the corresponding 2,2-dimethyl-3-[4(3H)-
oxo-2-quinazolinyl]methyl-1-[4(3H)-oxo-2-quinazolinyl]cyclobutanes and 2,2-dimethyl-1,3-di[4(3H)-
oxo-2-quinazolinylmethyl]cyclobutanes.

Keywords: N-acyl derivatives of 5-bromo-, 4-chloro-, and 4,5-dimethoxyanthranilic acids,
sym-homopinic acid, di-6,7-substituted 4(3H)-oxo-2-quinazolinyl derivatives of cyclobutane, pinic acid.

In continuation of studies [1-3] on the synthesis of 4(3H)-quinazolinones with a cyclobutyl substituent
at position 2, we have obtained the corresponding diamides 4a-c, 5a-c (Table 1) by the reactions of
4,5-substituted anthranilic acids (1a-c) with the pinic (2) [4] and sym-homopinic (3) acid dichlorides [5,6].
Heating the N-acyl anthranilic acids 4a-c, 5a-c and formamide in a molar ratio of 1:6 to 1:8 at 180-190°C leads
to the formation of the di-[4(3H)-oxo-2-quinazolinyl derivatives 6a-c, 7a-c (Table 1). The di-4(3H)-
quinazolinones 6a-c, 7a-c are soluble with difficulty in organic solvents, and decompose at the melting point.

On heating diamides 4 and 5 in formamide a side reaction occurs leading to the formation of 4(3H)-
quinazolinones 8a-c in 11-22% yield.

The structure of the synthesized compounds was confirmed by data of IR and 1H NMR spectra
(Table 2). The proton signals of the geminal α- and β-methyl groups were readily identified in the 1H NMR
spectra of all compounds 4-7 at δ 0.85-1.35 and 0.81-1.05 ppm respectively [7]. The diamides 5a,b were a
mixture of cis/trans isomers, which was indicated by the appearance of additional signals for the geminal
methyl groups at 1.04-1.06 ppm [5,8]. Low field signals were detected in the 1H NMR spectra of compounds 4
and 5 for amide NH protons (δ 11-12 ppm) and strongly broadened signals for the carboxyl group protons in the
range 6.5-9.5 ppm. Triplet signals were also identified in the spectra of compounds 4a-c for the C(3)-H methine
protons (δ 2.86-2.93 ppm, 3J = 9 Hz). Bands were clearly displayed in the IR spectra of diamides 4 and 5 for
νC=O absorption (1702-1672 and 1670-1642 cm-1), a band characteristic of δNCHO absorption (1532-1580 cm-1),
intense absorption for the NH bond (3108-3345 cm-1), and also a broad band for the absorption of the carboxyl
group at 2500-2600 cm-1. The amide functions of the quinazolinone were displayed in the IR spectra of
compounds 6 and 7 (νC=O 1650-1676, νNH 3123-3183 cm-1). The protons of the NH groups of compounds 6 and
7 in the 1H NMR spectra were detected as broadened signals in the range 9.59-12.38 ppm.
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TABLE 1. Characteristics of the Synthesized Compounds 4-8*

Found, %——————
Calculated, %

Com-
pound

Empirical
formula

С H Hal N

(mp, °C
(solvent for

crystallization)
Yield, %

4a C23H22Br2N2O6 47.15
47.45

4.02
3.81

27.14
27.48

4.55
4.81

228-230
MeNO2

85.6

4b C23H22Cl2N2O6 56.19
55.99

4.40
4.49

14.27
14.37

5.61
5.68

229-231
MeNO2

74.4

4c C27H32N2O10 54.38
59.55

5.81
5.92

5.02
5.14

264-265
MeNO2

76.8

5a C24H24Br2N2O6 48.58
48.34

4.01
4.06

26.85
26.80

4.59
4.70

221-222
MeCN

84.9

5b C24H24Cl2N2O6 56.66
56.81

4.70
4.77

13.72
13.97

5.63
5.52

231-232
MeCN

86.0

5c C28H34N2O10 60.11
60.21

6.06
6.13

4.89
5.01

243-245
BuOН

81.6

6a C23H20Br2N4O2 50.59
50.76

3.62
3.70

29.65
29.36

10.11
10.29

334-335
DMF−Н2О,

4:1

49.6

6b C23H20Cl2N4O2 60.85
60.67

4.29
4.43

15.89
15.57

11.93
12.30

314-316
MeNO2

47.5

6c C27H30N4O6 63.88
64.02

5.91
5.97

10.90
11.06

300-302
MeNO2

46.5

7a C24H22Br2N4O2 51.51
51.63

3.90
3.97

28.33
28.63

10.14
10.04

309-311
MeCN

48.2

7b C24H22Cl2N4O2 61.19
61.41

4.61
4.72

15.25
15.11

11.79
11.94

296-298
MeNO2

51.5

7c C28H32N4O6 64.73
64.60

6.23
6.20

10.63
10.76

311-313
DMF−Н2О,

1:1

50.0

8c C10H10N2O3 58.11
58.25

4.79
4.88

13.65
13.58

285-287
MeNO2

54.6

_______
* Compounds 4a-c to 7a-c decompose.
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TABLE 2. Spectral Characteristics of Compounds 4-8

Com-
pound

IR spectrum,
ν, cm-1

1Н NMR spectrum, δ, ppm, SSCC (J), Hz

4a 1698, 1666, 1600,
1574, 1504; 3345,
2610

0.93 (3H, s, β-CH3); 1.29 (3H, s, α-CH3); 2.06 (2H, m, СН2);
2.43 (3H, center m, СН2–CH); 2.89 (1H, t, 3J = 9.0, CH);
7.71 (2H, dd, 3 J = 9, 4J = 2, 2С6Н3); 8.03 (1Н, d, 4J = 2, С6Н3);
8.05 (1H, d, 4J = 2, С6Н3); 8.45 (1Н, d, 3J = 9, С6Н3);
8.53 (1H, d, 3J = 9, С6Н3); 10.96 (2H, br. s, 2NH)

4b 1680, 1642, 1600,
1580, 1514; 3260,
3125; 2627

0.94 (3H, s, β-CH3); 1.29 (3H, s, α-CH3); 2.07 (2H, m, СН2);
2.49 (3H, center m, СН2–CH); 2.93 (1H, t, 3J = 9, СН);
5.54 (1H, br. s, 2ОН); 7.18 (2H, dd, 3J = 9, 4J = 1.5, С6Н3);
7.99 (2H, d, 3J = 9, 2С6Н3); 8.62 (1H, d, 4J = 1.5, С6Н3);
8.73 (1Н, d, 4J = 1.5, С6Н3); 11.21 (1H, br. s, NH);
11.3 (1H, br. s, NH)

4c 1672, 1614, 1532;
3195

1.05 (3H, s, β-CH3); 1.35 (3H, s, α-CH3); 2.15-2.58 (5H, m,
–СН2СНСН2–); 2.86 (1H, t, 3J = 9, СН); 3.87 (6Н, s, 2СН3О);
3.95 (6Н, s, 2СН3О); 7.55 (2Н, s, 2С6Н2); 8.48 (1Н, s, С6Н2);
8.53 (1Н, s, С6Н2); 8.69 (2Н, br. s, 2ОН);
11.33 (1Н, br. s, NH); 11.46 (1H, br. s, NH)

5а 1702, 1668, 1602,
1578, 1518; 3119,
2590

0.99 and 1.06 (3H, s, β-CH3); 1.06 and 1.11 (3H, s, α-CH3);
1.43-2.59 (8H, m, –СН2СНСН2СНСН2–);
7.55 (2H, dd, 3J = 9, 4J = 2, 2С6Н3); 8.21 (2Н, d, 4J = 2, С6Н3);
8.66 (2Н, d, 3J = 9, 2С6Н3); 10.47 (2Н, br. s, 2NH);
11.33 (2H, br. s, 2ОH)

5b 1702, 1670, 1601,
1580, 1524; 3108,
2620

0.96 and 1.04 (3H, s, β-CH3); 1.04 and 1.05 (3H, s, α-CH3);
2.34 (8H, center m, –СН2СНСН2СНСН2–); 6.20 (2H, br. s, 2ОH);
7.20 (2H, dd, 3J = 9, 4J = 2, 2С6Н3); 8.01 (2Н, d, 3J = 9, 2С6Н3);
8.63 (2Н, d, 4J = 2, 2С6Н3); 11.23 (2Н, br. s, 2NH)

5c 1678, 1636, 1620,
1532, 1510;3108,
2620

0.96 (3H, s, β-CH3); 1.04 (3H, s, α-CH3);
2.34 (8H, center m, –СН2СНСН2СНСН2–); 3.76 (6H, s, 2CH3O);
3.79 (6H, s, 2CH3O); 7.47 (2H, s, C6H2); 8.29 (2H, s, C6H2);
9.20 (2H, br. s, 2ОH); 11.54 (2Н, br. s, 2NH)

6a 1674, 1617; 3134 0.81 (3H, s, β-CH3); 1.25 (3H, s, α-CH3);
1.77-2.94 (6H, m, –СНСН2СНСН2–); 7.54 (1H, d, 3J = 9, С6Н3);
7.58 (1H, d, 3J = 9, С6Н3); 7.84 (2Н, dd, 3J = 9, 4J = 2, С6Н3);
8.16 (2Н, d, 4J = 2, С6Н3); 12.14 (1Н, br. s, NH);
12.38 (1H, br. s, NH)

6b 1660, 1556, 1606,
1500; 3171, 3123

0.83 (3H, s, β-CH3); 1.27 (3H, s, α-CH3);
2.01-3.61 (6H, m, –CHСН2СНСН2–);
7.46 (2Н, dd, 3J = 9, 4J = 2, 2С6Н3); 7.60 (1H, d, 4J = 2, С6Н3);
7.66 (1Н, d, 4J = 2, C6H3); 8.16 (2H, d, 3J = 9, C6H3);
11.16 (2Н, br. s, 2NH)

6c 1656, 1614, 1522,
1490; 3167

0.83 (3H, s, β-CH3); 1.25 (3H, s, α-CH3);
1.98-3.08 (6H, m, –CHСН2СНСН2–); 3.87 (6H, s, 2CH3O);
3.92 (6H, s, 2CH3O); 7.10 (1H, s, С6Н2); 7.16 (1H, s, C6H2);
7.45 (2H, s, C6H2); 11.85 (1H, br. s, NH); 12.09 (1Н, br. s, NH)

7a 1676, 1618, 1557;
3163

1.01 (6H, α-, β-CH3); 1.48-2.74 (8H, m, –СН2СНСН2СНСН2–);
7.49 (2H, d, 3J = 9, С6Н2); 7.87 (2Н, dd, 3J = 9, 4J = 2, С6Н2);
8.16 (2Н, d, 4J = 2, С6Н2); 12.34 (2H, br. s, 2NH)

7b 1672, 1614, 1532;
3183

1.01 (3H, s, β-CH3); 1.04 (3H, s, α-CH3);
1.58-2.63 (8H, m, –СН2СНСН2СНСН2–);
7.45 (2H, dd, 3J = 9, 4J = 2, 2С6Н2); 7.63 (2H, d, 4J = 2, 2С6Н2);
8.13 (2H, d, 3J = 9, 2С6Н2); 12.05 (2H, br. s, 2NH)

7c 1656, 1612, 1522,
1490; 3167

0.82 (3H, s, β-CH3); 0.85 (3H, s, α-CH3);
1.45-2.27 (8H, m, –СН2СНСН2СНСН2–); 3.09 (6H, s, 2CH3O);
3.14 (6H, s, 2CH3O); 5.65 (2H, s, С6Н2); 5.94 (2H, s, 2C6H2);
9.59 (2H, s, 2NH)

8c 1711, 1682, 1640,
1600, 1505; 3180,
3120

3.38 (3H, s, CH3O); 3.94 (3H, s, CH3О); 7.15 (1H, s, C6H2);
7.47 (1H, s, C6H2); 8.01 (1H, s, =CH–); 11.42 (1H, br. s, NH)
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EXPERIMENTAL

The IR spectra were taken on a Specord IR 75 instrument for suspensions of substances in nujol
(1500-1800 cm-1) and in hexachlorobutadiene (2000-3600 cm-1). The frequencies of the stretching vibrations of
C–H bonds at 2800-3050 cm-1 are not given.

The 1H NMR spectra were recorded on a Bruker WH-90/DS (90 MHz) in DMSO-d6 solution, internal
standard was TMS. A check on the purity of products was effected by TLC on Silufol UV-254 plates in the
system CHCl3–C2H5OH, 9:1. Visualization was with UV light or chlorine with subsequent treatment with
KI–benzidine reagent. The acid chlorides of cis-3-carboxy-2,2-dimethylcyclobutylacetic (pinic) (2) and
cis/trans-3-(carboxymethyl)-2,2-dimethylcyclobutylacetic (sym-homopinic) (3) acids were obtained by the
procedure of [4-6]. The diamides of pinic and sym-homopinic acids were synthesized by the methods of [4,6,8].

The physicochemical and spectral characteristics of compounds 4-8 are given in Tables 1 and 2.
The yield of the known quinazolone 8c obtained by the method of [9] is given in Table 1. Yields of the

reaction side products 8a-c are given in the experimental section.
4-Bromo-2-carboxyphenylamide of 3-(4-Bromo-2-carboxyphenylaminocarbonyl)-2,2-dimethyl-

cyclobutylacetic Acid (4a). A solution of pinic acid dichloride 2 (1.0 g, 4.5 mmol) in absolute dioxane (20 ml)
was added slowly with stirring to a solution of 5-bromoanthranilic acid 1a (1.94 g, 9 mmol) and triethylamine
(2.0 ml, 14.3 mmol) in absolute dioxane (30 ml) at 20°C. The mixture was stirred for 3 h, the precipitate of
triethylamine hydrochloride was filtered off, and washed with dioxane (3 × 10 ml). The filtrate was evaporated
on a rotary evaporator in a water-pump vacuum, and the residue recrystallized.

The Diamides 4b,c were obtained analogously from anthranilic acids 1b,c by reaction with pinic acid
dichloride 2.

1,3-Di-(4-bromo-2-carboxyphenylaminocarbonylmethyl)-2,2-dimethylcyclobutane (5a). A solution
of sym-homopinic acid dichloride 3 (0.82 g, 3.5 mmol) in absolute dioxane (20 ml) was added slowly with
stirring to a solution of 5-bromoanthranilic acid 1a (1.54 g, 7.1 mmol) and triethylamine (1.0 ml, 7.1 mmol) in
absolute dioxane (30 ml) at 20°C, and the mixture stirred for 2 h. The precipitate was filtered off, washed with
dioxane (3 × 10 ml), the filtrate evaporated on a rotary evaporator in a water-pump vacuum, and the residue of
5a was recrystallized.

The Diamides 5b,c were obtained analogously from amines 1b,c by reaction with sym-homopinic acid
dichloride 3.

3-[6-Bromo-4(3H)-oxo-2-quinazolinyl]-1-[6-bromo-4(3H)-oxo-2-quinazolinyl]methyl-2,2-dimethyl-
cyclobutane (6a). A mixture of diamide 4a (0.84 g, 1.65 mmol) and formamide (1 ml, 7.14 mmol) was heated at
180-185°C for 2 h in a small flask with a reflux condenser. The mixture was cooled, and suspended in water
(30 ml) containing sodium bicarbonate (0.6 g, 7.14 mmol). The precipitate of 6a was filtered off, washed with
water (3 × 20 ml), dried in the air, and recrystallized.

After removing 6a the aqueous solution was acidified with dilute (1:1) hydrochloric acid to pH 5-6,
extracted with chloroform (3 × 20 ml), and the extract dried over magnesium sulfate. The solvent was distilled
on a rotary evaporator in a water-pump vacuum. The residue was recrystallized from nitromethane and
6-bromo-4(3H)-quinazolinone 8a (0.16 g, 21.6%) was obtained; mp 264-266°C (decomp.); lit. mp 261-267°C
(decomp.) [9]. No depression of melting point was observed on mixing with a known synthesized sample.

The diquinazolinyl derivatives 6b,c and the corresponding quinazolones 8b,c were obtained
analogously from diamides 4b,c.

7-Chloro-4(3H)-quinazolinone (8b). Yield 19.9%; mp 243-244°C (decomp.) (acetonitrile); lit.
mp 242-245°C [9]. No depression of melting point was observed on mixing with a known synthesized sample.

6,7-Dimethoxy-4(3H)-quinazolinone (8c). Yield 11.4%; mp 285-287°C (decomp.) (nitromethane). No
depression of melting point was observed on mixing with a known synthesized sample. The identical known
quinazolinone 8c was obtained by the procedure of [9].
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1,3-Di-[6-bromo-4(3H)-oxo-2-quinazolinylmethyl]-2,2-dimethylcyclobutane (7a). A mixture of
diamide 5a (0.35 g, 0.59 mmol) and formamide (0.45 g, 5 mmol) was heated at 186±2°C in a small flask with a
reflux condenser. The mixture was cooled, and suspended in water (30 ml) containing sodium bicarbonate
(0.2 g, 2.38 mmol). The precipitate of 7a was filtered off, washed with water (3 × 20 ml), dried in the air, and
recrystallized.

After separating 7a the aqueous solution was acidified with dilute (1:1) hydrochloric acid to pH 5-6,
extracted with chloroform (3 × 20 ml), and the extract dried over magnesium sulfate. The solvent was distilled
on a rotary evaporator in a water-pump vacuum. The residue was recrystallized from nitromethane and
quinazolinone 8a (0.05 g, 18.9%) was obtained.

The diquinazolinyl derivatives 7b,c and the corresponding quinazolinones 8b,c were obtained
analogously from diamides 5b,c. The yield of 8b was 16.2%, and of 8c 12.5%.
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